Projective Nonnegative Matrix Factorization for Image Compression and Feature Extraction

نویسندگان

  • Zhijian Yuan
  • Erkki Oja
چکیده

In image compression and feature extraction, linear expansions are standardly used. It was recently pointed out by Lee and Seung that the positivity or non-negativity of a linear expansion is a very powerful constraint, that seems to lead to sparse representations for the images. Their technique, called Non-negative Matrix Factorization (NMF), was shown to be a useful technique in approximating high dimensional data where the data are comprised of non-negative components. We propose here a new variant of the NMF method for learning spatially localized, sparse, part-based subspace representations of visual patterns. The algorithm is based on positively constrained projections and is related both to NMF and to the conventional SVD or PCA decomposition. Two iterative positive projection algorithms are suggested, one based on minimizing Euclidean distance and the other on minimizing the divergence of the original data matrix and its non-negative approximation. Experimental results show that P-NMF derives bases which are somewhat better suitable for a localized representation than NMF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Projective Nonnegative Matrix Factorization: Sparseness, Orthogonality, and Clustering

Abstract In image compression and feature extraction, linear expansions are standardly used. It was pointed out by Lee and Seung that the positivity or non-negativity of a linear expansion is a very powerful constraint, that seems to lead to sparse representations for the images. Their technique, called Non-negative Matrix Factorization (NMF), was shown to be useful in approximating high dimens...

متن کامل

Projective robust nonnegative factorization

Nonnegative matrix factorization (NMF) has been successfully used in many fields as a low-dimensional representation method. Projective nonnegative matrix factorization (PNMF) is a variant of NMF that was proposed to learn a subspace for feature extraction. However, both original NMF and PNMF are sensitive to noise and are unsuitable for feature extraction if data is grossly corrupted. In order...

متن کامل

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005